disease. Proc Natl Acad Sci U S A 101(42):15148–15153. https://doi.org/10.1073/pnas.
0404315101
Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications.
Drug Discov Today 20(3):318–331. https://doi.org/10.1016/j.drudis.2014.10.012
Lecoutey C, Hedou D, Freret T, Giannoni P, Gaven F, Since M, Bouet V, Ballandonne C,
Corvaisier S, Fréon AM, Mignani S (2014) Design of donecopride, a dual serotonin subtype
4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer’s disease
treatment. Proc Natl Acad Sci 111(36):E3825–E3830. https://doi.org/10.1073/pnas.
1410315111
Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J, Wang X (2006)
TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids
Res 34(suppl_2):W219–W224. https://doi.org/10.1093/nar/gkl114
Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E,
Doak AK, Côté S, Shoichet BK (2012) Large-scale prediction and testing of drug activity on
side-effect targets. Nature 486(7403):361. https://doi.org/10.1038/nature11159
Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L (2011) DRAR-CPI: a server for
identifying drug repositioning potential and adverse drug reactions via the chemical–protein
interactome. Nucleic Acids Res 39(suppl_2):W492–W498. https://doi.org/10.1093/nar/gkr299
MacCuish JD, MacCuish NE (2014) Chemoinformatics applications of cluster analysis. Wiley
Interdiscip Rev Comput Mol Sci 4(1):34–48. https://doi.org/10.1002/wcms.1152
Maggiora GM (2011) The reductionist paradox: are the laws of chemistry and physics sufficient for
the discovery of new drugs? J Comput Aided Mol Des 25(8):699–708. https://doi.org/10.1007/
s10822-011-9447-8
McMartin C, Bohacek RS (1997) QXP: powerful, rapid computer algorithms for structure-based
drug design. J Comput Aided Mol Des 11(4):333–344. https://doi.org/10.1023/
A:1007907728892
Méndez-Lucio O, Tran J, Medina-Franco JL, Meurice N, Muller M (2014) Toward drug
repurposing in epigenetics: Olsalazine as a hypomethylating compound active in a cellular
context. ChemMedChem 9(3):560–565. https://doi.org/10.1002/cmdc.201300555
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated
docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J
Comput Chem 19(14):1639–1662. https://doi.org/10.1002/(SICI)1096987X(19981115)19:
14<1639::AIDJCC10>3.0.CO;2-B
Özgür A, Vu T, Erkan G, Radev DR (2008) Identifying gene-disease associations using centrality
on a literature mined gene-interaction network. Bioinformatics 24(13):i277–i285. https://doi.
org/10.1093/bioinformatics/btn182
Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of
pharmacological space. Nat Biotechnol 24(7):805–815. https://doi.org/10.1038/nbt1228
Pérez-Nueno VI, Karaboga AS, Souchet M, Ritchie DW (2014) GES polypharmacology
fingerprints: a novel approach for drug repositioning. J Chem Inf Model 54(3):720–734.
https://doi.org/10.1021/ci4006723
Pérez-Nueno VI, Venkatraman V, Mavridis L, Ritchie DW (2012) Detecting drug promiscuity
using gaussian ensemble screening. J Chem Inf Model 52(8):1948–1961. https://doi.org/10.
1021/ci3000979
Pospisil P, Iyer LK, Adelstein SJ, Kassis AI (2006) A combined approach to data mining of textual
and structured data to identify cancer-related targets. BMC Bioinform 7(1):354. https://doi.org/
10.1186/1471-2105-7-354
Pospisil P, Wang K, Al Aowad AF, Iyer LK, Adelstein SJ, Kassis AI (2007) Computational
modeling and experimental evaluation of a novel prodrug for targeting the extracellular space
of prostate tumors. Cancer Res 67(5):2197–2205
Reddy AS, Tan Z, Zhang S (2014) Curation and analysis of multi-targeting agents for
polypharmacological modeling. J Chem Inf Model 54(9):2536–2543. https://doi.org/10.1021/
ci500092j
2
Polypharmacology: New Paradigms in Drug Development
25