disease. Proc Natl Acad Sci U S A 101(42):1514815153. https://doi.org/10.1073/pnas.

0404315101

Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications.

Drug Discov Today 20(3):318331. https://doi.org/10.1016/j.drudis.2014.10.012

Lecoutey C, Hedou D, Freret T, Giannoni P, Gaven F, Since M, Bouet V, Ballandonne C,

Corvaisier S, Fréon AM, Mignani S (2014) Design of donecopride, a dual serotonin subtype

4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimers disease

treatment. Proc Natl Acad Sci 111(36):E3825E3830. https://doi.org/10.1073/pnas.

1410315111

Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J, Wang X (2006)

TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids

Res 34(suppl_2):W219W224. https://doi.org/10.1093/nar/gkl114

Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E,

Doak AK, Côté S, Shoichet BK (2012) Large-scale prediction and testing of drug activity on

side-effect targets. Nature 486(7403):361. https://doi.org/10.1038/nature11159

Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L (2011) DRAR-CPI: a server for

identifying drug repositioning potential and adverse drug reactions via the chemicalprotein

interactome. Nucleic Acids Res 39(suppl_2):W492W498. https://doi.org/10.1093/nar/gkr299

MacCuish JD, MacCuish NE (2014) Chemoinformatics applications of cluster analysis. Wiley

Interdiscip Rev Comput Mol Sci 4(1):3448. https://doi.org/10.1002/wcms.1152

Maggiora GM (2011) The reductionist paradox: are the laws of chemistry and physics sufcient for

the discovery of new drugs? J Comput Aided Mol Des 25(8):699708. https://doi.org/10.1007/

s10822-011-9447-8

McMartin C, Bohacek RS (1997) QXP: powerful, rapid computer algorithms for structure-based

drug design. J Comput Aided Mol Des 11(4):333344. https://doi.org/10.1023/

A:1007907728892

Méndez-Lucio O, Tran J, Medina-Franco JL, Meurice N, Muller M (2014) Toward drug

repurposing in epigenetics: Olsalazine as a hypomethylating compound active in a cellular

context. ChemMedChem 9(3):560565. https://doi.org/10.1002/cmdc.201300555

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated

docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J

Comput Chem 19(14):16391662. https://doi.org/10.1002/(SICI)1096987X(19981115)19:

14<1639::AIDJCC10>3.0.CO;2-B

Özgür A, Vu T, Erkan G, Radev DR (2008) Identifying gene-disease associations using centrality

on a literature mined gene-interaction network. Bioinformatics 24(13):i277i285. https://doi.

org/10.1093/bioinformatics/btn182

Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of

pharmacological space. Nat Biotechnol 24(7):805815. https://doi.org/10.1038/nbt1228

Pérez-Nueno VI, Karaboga AS, Souchet M, Ritchie DW (2014) GES polypharmacology

ngerprints: a novel approach for drug repositioning. J Chem Inf Model 54(3):720734.

https://doi.org/10.1021/ci4006723

Pérez-Nueno VI, Venkatraman V, Mavridis L, Ritchie DW (2012) Detecting drug promiscuity

using gaussian ensemble screening. J Chem Inf Model 52(8):19481961. https://doi.org/10.

1021/ci3000979

Pospisil P, Iyer LK, Adelstein SJ, Kassis AI (2006) A combined approach to data mining of textual

and structured data to identify cancer-related targets. BMC Bioinform 7(1):354. https://doi.org/

10.1186/1471-2105-7-354

Pospisil P, Wang K, Al Aowad AF, Iyer LK, Adelstein SJ, Kassis AI (2007) Computational

modeling and experimental evaluation of a novel prodrug for targeting the extracellular space

of prostate tumors. Cancer Res 67(5):21972205

Reddy AS, Tan Z, Zhang S (2014) Curation and analysis of multi-targeting agents for

polypharmacological modeling. J Chem Inf Model 54(9):25362543. https://doi.org/10.1021/

ci500092j

2

Polypharmacology: New Paradigms in Drug Development

25